Monthly Allocation in TRIM3

To decide if a person or family is eligible for a government transfer program during each month of a calendar year, TRIM3 needs information on income and labor force activity on a monthly basis. Since the CPS does not have information for each month, there are procedures in TRIM3 to take the annual CPS variables on income and labor force participation and "allocate" that information across the months of the year. Beginning with the conversion of the March 2003 CPS survey, all months are treated as having the same number of weeks--4.33333. Prior to that time, some months were assigned 4 weeks, others 5. The variables that are created for each month include:

· the number of weeks worked during the month

· the number of weeks worked full-time during the month

· the number of weeks worked part-time during the month

· the number of weeks unemployed (looking for work) during the month

· the number of hours worked each month

· the main activity during the month (working, retired, etc.)

· monthly earned income

· monthly asset income

· monthly unemployment compensation

· monthly workers compensation

· monthly unearned income

· monthly alimony

· monthly child support

Three of the measures listed above (weeks worked full-time, weeks worked part-time, and monthly hours worked) are available only beginning with the March 2005 conversion.

In addition, information is saved on each person’s record giving the different fractional distributions used to allocate different types of income, so those percentage distributions can be used to allocate other annual income amounts as part of a simulation.

Monthly Activity Variables

TRIM3 creates the following six variables describing monthly labor force activity. The latter three (MonthlyWeeksFullTime, MonthlyWeeksPartTime, and MonthlyHoursWorked) are available beginning with the March 2005 CPS conversion.
· MonthlyWeeksWorked – weeks working during the month

This variable is used in creating the MonthlyLaborForceActivity variable. Note that the maximum weeks that can be worked in a month is either 4.33333 beginning with the March 2003 CPS or 4 or 5 weeks in prior years, which contain four 5-week months and eight 4-week months. (The use of either 4 or 5 weeks in earlier years was based on an analysis of SIPP data indicating that monthly earnings fluctuated between "long months" and "short months" even for people working full-time at the same job, presumably because they received more paychecks in some months than in others.)
· MonthlyWeeksOfUnemployment – weeks unemployed (looking for work) during the month

This variable is used in dividing annual unemployment insurance and workers compensation income across the months; and is used in creating MonthlyLaborForceActivity.

· MonthlyLaborForceActivity – main activity during the month

Possible codes for this field are: working, looking for work, ill/disabled, caring for home/family, going to school, retired, discouraged, and "other".

The standard TRIM3 procedures for creating these 3 monthly variables use 6 key pieces of annual information for each economic adult (persons aged 15+):

· weeks working during the CY

· number of employers during the CY

· if not working at all during CY: reason why not working

· if only working part of the year: reason why only part-year work

· weeks looking for work or on layoff during the CY

· number of stretches of looking for work

The exact procedures are very detailed, and are described later. Here are some of the main points:

· Decide how many "periods" to create. Variables are created to indicate how many different labor force "periods" a person had during the year, the length of each period, and the activity during that period. Possible activities are: working, unemployed, ill/disabled, taking care of home/family, school, retired, discouraged, and "other."

The number, length, and type of periods are consistent with the person’s responses to the annual labor force questions. In the simplest case, when a person reports working for 52 weeks, there is just one period, it’s 52 weeks long, and the activity is working! If a person says she worked for 40 weeks, had one employer, was unemployed for 12 weeks, and had one stretch of unemployment, then she is assigned 1 12-week period of unemployment and 1 period of employment for the remainder of the year.

· Calculate targets. TRIM3 creates monthly targets for the aggregate weeks of work, unemployment, and non-labor force activity. (In other words, it decides that it wants to find x million weeks of work in January, y million weeks of work in February, etc.) It calculates these targets based on the total weeks worked and looking for work according to the CPS data, plus the monthly numbers of employed persons and unemployed persons according to Bureau of Labor Statistics data.

· Allocate the periods across the year. The methodology picks a random month to start allocating periods. The order in which a person’s periods are allocated depends partly on random assignment, and partly on trying to hit the targets calculated above. (TRIM3 typically does a pretty good job of hitting these targets.) Note that periods can start and end in the middle of a month.

· Determine main activity each month. After the periods have been allocated across the weeks of the year, TRIM3 determines the main activity in each month, as follows:

· If the person worked the entire month, then activity = working.

· Else, if weeks of unemployment are at least 1/3 of the nonworking weeks in the month, then activity = unemployed.

· Otherwise, the main activity is taken from the person’s answer to the question of why s/he didn’t work during the year, or didn’t work the entire year (ill/disabled, caring for home/family, school, retired, discouraged, or "other.")

· MonthlyWeeksFullTime – number of weeks worked full-time during the month.

Weeks of full-time work are assigned based on a worker’s reported number of weeks worked during the year, the number of weeks worked part-time, hours per week usually worked, and the number of weeks unemployed. With this information, and beginning with a month randomly chosen, the allocation process first assigns part-time and unemployment weeks, if any, and then assigns remaining weeks worked to full-time employment until all weeks worked have been assigned.

· MonthlyWeeksPartTime – number of weeks worked part-time during the month.

The allocation process is the same as described for MonthlyWeeksFullTime.

· MonthlyHoursWorked – number of hours worked during the month.

Once MonthlyWeeksFullTime and MonthlyWeeksPartTime are determined, MonthlyHoursWorked is computed based on those allocations and usual hours worked. If usual hours worked is 35 or more, then the number of hours worked during full-time weeks is the usual hours reported, and the worker is assumed to work 20 hours during any part-time weeks assigned to a month. However, if usual hours reported is less than 35, then the number of hours worked during full-time weeks is assumed to be 40, and part-time weeks are assigned the hours reported by usual hours worked. This variable is used in dividing annual earned income across the months of the year.
Monthly Income Variables

TRIM3 creates several different sets of monthly income variables from the annual income variables reported on the CPS. Different procedures are used for different types of income. For each of these variables, this section reviews the TRIM3 methodology. A more detailed description is provided later.

(Note: This section does not discuss SSI or AFDC income because TRIM3 does not perform monthly allocation for those annual amounts. Instead, TRIM3 creates monthly amounts in the SSI and AFDC/TANF simulation modules.)

MonthlyEarnings

TRIM3’s standard procedure is to allocate annual earned income to months of the year in proportion to hours worked during each month. (Prior to the March 2005 CPS, earned income was allocated in proportion to weeks worked each month.) For example, if a person reported working 40 hours for 26 weeks during the year, then his/her earnings will be spread evenly over the 26 weeks picked as the working weeks.
MonthlyAssets

TRIM3’s standard procedure is to assume that asset income is received in 12 equal portions across the year.

MonthlyUnemploymentComp

TRIM3 creates monthly unemployment compensation by looking at the variable MonthlyWeeksOfUnemployment (the weeks during a month to which a period of unemployment has been assigned). For a randomly-selected 49% of annual recipients, the monthly UC amount as a percentage of the annual UC amount equals the percentage of total weeks unemployed that fall within that month. For the remaining 51% of annual recipients, the monthly amount of unemployment is based on the prior month’s weeks of unemployment as a percentage of total weeks of unemployment (based on earlier SIPP analysis showing that a little over half of the recipients receive their unemployment compensation with a lag.). When a person has unemployment compensation benefits but no weeks unemployed, the benefits are divided according to annual and monthly weeks not in the labor force.
 If the person works the entire year, the UC benefits are simply divided by 12.

MonthlyWorkersComp

If annual worker’s comp is greater than a computed dollar amount computed for the current on simulation year
 (e.g., $7,290.50 for CY 1996), then worker’s comp is divided evenly over weeks of non-work (either unemployed or not in the labor force). If there are no weeks of non-work, then it is divided evenly across the months of the year. If it is less than $7,290.50, for 20% of the cases a single month is chosen at random and the entire workers compensation benefit is assigned to that month. For the other 80 percent, the amount of worker’s compensation is divided evenly over weeks of non-work (either unemployed or not in the labor force). If there are no weeks of non-work, then it is divided evenly across the months of the year.

MonthlyChildSupport and MonthlyAlimony

TRIM3 creates separate monthly series for these two income amounts, but uses the same procedures for both. The monthly allocation is based on a "look-up table" that was originally developed from SIPP data, and which we now update each year for inflation. The table gives, for different ranges of combined annual alimony and child support income, the percentage of recipients getting that income in 1 month, 2 months, 3 months....12 months. TRIM3 uses random numbers to pick a number of months for each recipient, and then uses random numbers to assign those months within the year (not necessarily consecutively).

Beginning with the conversion of the March 2001 CPS survey, separate look-up tables were made available for TANF recipients and non-TANF recipients using data from the 1996 SIPP on alimony and child support recipiency patterns of these two groups. The tables show the cumulative probabilities that combined child support and alimony income is received for 1-12 months for various annual Child Support + Alimony income classifications that differ for the TANF and non-TANF groups. Persons who receive both (Child Support and/or Alimony) and TANF and whose Child Support+Alimony divided by months of TANF receipt is equal to their state's pass-through amount (for child support paid as TANF) are excluded from the look-up table. Rather, their months of Alimony and/or Child Support receipt is set equal to the reported number of months of TANF receipt.

MonthlyUnearnedIncome

Beginning with the conversion of the 2006 ASEC, MonthlyUnearnedIncome is the sum of SocialSecurityOrRrr, GovernmentPensions, PrivatePensions, VeteransPayments, and OtherRegularContributions all allocated evenly across the months of the year, plus Alimony and ChildSupport allocated by a factor corresponding to the allocation of alimony and child support income, plus DetailedOtherIncome [wherein DetailedOtherIncome is the sum of LastOwnWorkersCompIns, LastOwnDisabilityIns, and LastStateTempDisability all allocated by weeks not worked, plus LastTotalEducationalAssistance, LastBlackLungMinerBen, and LastAnyOtherIncome all allocated evenly across the months of the year.]

Prior to that time, MonthlyUnearnedIncome is the sum of SocialSecurityOrRrr, GovernmentPensions, PrivatePensions, VeteransPayments, DetailedOtherIncome, and OtherRegularContributions all evenly allocated among the months of the year plus Alimony and ChildSupport allocated by the alimony, child support allocation factor.
MonthlyGeneralAssistance

TRIM3 has not been creating a permanent set of monthly income variables for general assistance income, although it does need to guess at a monthly GA income amount for purposes of the Food Stamp Program. TRIM3 divides the annual GA income amount by 12 for purposes of the Food Stamp Program simulation, but does not permanently save those results. Note that the SSI and AFDC programs both exclude GA income. Also note that there’s no reason that TRIM3 couldn’t create a set of monthly GA variables. But since it’s very easy to just divide a single annual amount by 12 "on the fly" it hasn’t seemed worth saving a permanent variable.

Detailed TRIM3 Months Allocation Procedure
Inputs, Outputs, and Methods

Input Fields Used in Monthly Allocation

Asterisks identify secondary input fields, i.e., fields used to compute another field(s) that is directly used by the monthly allocation procedure.

· Alimony

· BusinessSelfEmployment

· ChildSupport

· DetailedOtherIncome (Prior to the March 2005 conversion, DetailedOtherIncome is a computed positive dollar value equal to LastWorkersCompensation, if LastWorkersCompensationSource = 3 +. Beginning with the March 2005 conversion, DetailedOtherIncome is LastOwnWorkersCompIns + LastOwnDisabilityIns + LastTotalEducationalAssistance + LastBlackLungMinerBen+ LastStateTempDisability + LastAnyOtherIncome)

· LastPrimaryDisability (if LastPrimaryDisabilitySource = 7 +)

· LastSecondaryDisability (if LastSecondaryDisabilitySource = 7 +)

· LastTotalEducationAssistance +

· LastOtherIncome (if LastOtherSource = 10 +)

· LastOtherIncome (if LastOtherSource = 19)

· Dividends (Dividends is a computed positive dollar amount equal to LastDividends + (LastOtherIncome if LastOtherSource = 6))

· EstatesOrTrusts

· FarmSelfEmployment

· GovernmentPensions

· Interest

· LastDividends* - Dividends from stocks and mutual funds

· LastNonworkerWeeksLooking - Weeks looking for work or on layoff last year (coded for non-workers)

· LastNumberOfEmployers - Number of employers last year

· LastNumberOfStretchesLooking - Number of stretches spent looking for work or on layoff

· LastOtherIncome* - Any other income not otherwise specifically identified

· LastPartYearWeeksLooking - Weeks looking or on layoff last year (coded for Part-year workers)

· LastPrimaryDisability* - Amount of primary disability income last year

· LastReasonNotWorking - Main reason for not working last year

· LastRemainingActivity - Remaining activity last year (coded for part-year workers)

· LastSecondaryDisability* - Amount of secondary disability income last year

· LastTotalEducationAssistance* - Total amount of educational assistance last year

· LastWeeksWorked - Weeks worked last year, even for a few hours

· LastWorkersCompensation* - Amount of workmen's compensation last year

· OtherRegularContributions - Income from other regular contributions

· PrivatePensions

· RentsOrRoyalties

· SocialSecurityOrRrr

· TotalWages

· UnemploymentCompensation

· VeteransPayments

· WorkersCompensation

Outputs from Monthly Allocation
(Stored in the AdultMonthly table)

· ByAlimonyChildSupport

· ByHoursWorked

· ByUnemploymentCompensation

· ByWeeksNotWorked

· ByWeeksWorked

· ByWorkersCompensation

· MonthlyAlimony

· MonthlyAssets

· MonthlyChildSupport

· MonthlyEarnings

· MonthlyHoursWorked

· MonthlyLaborForceActivity

· MonthlyUnemploymentComp

· MonthlyUnearnedIncome

· MonthlyWeeksFullTime

· MonthlyWeeksOfUnemployment

· MonthlyWeeksPartTime

· MonthlyWeeksWorked

· MonthlyWorkersComp

Monthly Allocation Functions

During conversion of a March CPS file, the main TRIM3 conversion routine, Convert.cpp, makes a call to the monthly allocation routine, Allocate.cpp, which allocates certain annual labor force, employment and income data that are available for adults on the March CPS to various months of the year. The controlling function within Allocate.cpp is MonthlyAllocation. MonthlyAllocation limits simulation year to 1976 or 1979 to the latest year for which data are available. In turn, it calls the following functions, which are described in the following text.

[In reviewing the following functions, bear in mind that in C++, subscripts are zero-based, i.e., they range from zero (rather than 1) to their upper limit. Thus, the upper limit for months in a year is 11.]

MonthlyAllocation

ComputeTargetsFromBLS

SetActivityIndex
MakeConsistentValues

GetPeriods

AllocatePeriod

CalculateFactors (in Factor.cpp)

MakeMonthlyAlloc

Function Tasks

ComputeTargetsFromBLS (in Allocate.cpp)

This function sums the BLS monthly estimates of the number of persons employed and unemployed, then computes averages for the year. It computes working and unemployment ratios for all adults for each month and monthly targets for weeks worked, weeks unemployed, and weeks not in the labor force.

BLS estimates are placed in the following arrays that are indexed first by year (for 1976 and 1979-current), then by month. [Numbers in brackets indicate the maximum number of subscript elements, e.g., there are 12 subscript elements for months of a year, with values ranging from 0 through 11.]

BlsEstimatedPersonsWorking [24][12]

BlsEstimatedPersonsUnemploy [24][12]

Compute AverageWeeksWorked and AverageWeeksUnemplyed for the aggregate of all adults in an input file:

AverageWeeksWorked = TotalWeeksWorked / 52

 [Note: TotalWeeksWorked is computed in Convert.cpp, the sum of LastWeeksWorked (weighted)

 for all adults in a CPS input file.]

AverageWeeksUnemplyed = TotalWeeksUnemplyed / 52

 [Note: TotalWeeksUnemplyed is computed in Convert.cpp, the sum of WeeksUnemplyed

 (weighted) for all adults in a CPS input file.]

Define following:

AverageWeeksNotLabor = TOTNLF / 52

 [Note: TOTNLF not initialized/defined prior to use. Has no substantive impact on results.]

TMPAVW = AverageWeeksWorked [Defined above]

AVGTOT = TotalPersons

 (NOTE: TotalPersons is computed in Convert.cpp. It represents the total number of adults

 (weighted) on an input file.)

TotalWorking = sum of BlsEstimatedPersonsWorking for all months of the year

TotalUnemploy = sum of BlsEstimatedPersonsUnemploy for all months of the year

MonthlyAverageTotalWorking = TotalWorking / 12

MonthlyAverageTotalUnemploy = TotalUnemploy / 12

Compute ratios and targets for each month:

 WorkingRatio [Month] =

 BlsEstimatedPersonsWorking [BlsYear][Month] /

 MonthlyAverageTotalWorking;

 UnemplyRatio [Month] =

 BlsEstimatedPersonsUnemploy [BlsYear][Month] /

 MonthlyAverageTotalUnemploy;

 TargetWeeksWorked [Month] =

 AverageWeeksWorked * WeeksPerMonth [Month] * WorkingRatio [Month]

 TargetWeeksUnemplyed [Month] =

 AverageWeeksUnemplyed * WeeksPerMonth [Month] * UnemplyRatio [Month]

 TargetWeeksNotLabor [Month] = (AVGTOT * WeeksPerMonth [Month] -

 TargetWeeksWorked [Month] - TargetWeeksUnemplyed [Month]

 TOTNLF = TOTNLF + TargetWeeksNotLabor [Month]

SetActivityIndex (in Allocate.cpp)

Determines labor force activity status based on weeks worked, looking and unemployed and LastRemainingActivity (coded for part-year workers).

WeeksUnemplyed = maximum of (LastNonworkerWeeksLooking, LastPartYearWeeksLooking)

if person is an EconomicAdult (i.e., age 15+) and

LastWeeksWorked > 0 or WeeksUnemployed > 0 then do;

 if (LastWeeksFullTime + WeeksUnemployed = 52) then

ActivityIndex = 1; //Full-time

 else if (LastWeeksPartTime + WeeksUnemployed = 52) then

ActivityIndex = 2; //Part-time

 else if (LastWeeksFullTime + LastWeeksPartTime + WeeksUnemployed)

= 52) then do;

if (RemainingFullWeeksWorked / RemainingWeeksTotal > 0)

 ActivityIndex = 1; //Full-time

else if (RemainingPartWeeksWorked / RemainingWeeksTotal > 0)

 ActivityIndex = 2; //Part-time

 else do;

 if (LastWeeksWorked >= 1 and LastWeeksWorked <= 49) then do;

 if (LastRemainingActivity = NIU_NOT_PART_YEAR_WORKER

 or LastRemainingActivity == NO_WORK_AVAILABLE_PART_YEAR

 or LastRemainingActivity == OTHER_ACTIVITY_PART_YEAR) then

 ActivityIndex = 9; //OTHER;

 else if (LastRemainingActivity == ARMED_FORCES_PART_YEAR)

 ActivityIndex = 7; //ARMED_FORCES;

 else if (LastRemainingActivity == RETIRED_PART_YEAR)

 ActivityIndex = 8; //RETIRED;

 else

 ActivityIndex =

 (LastRemainingActivity) + 2; // ILL_OR_DISABLED_PART_YEAR,

TAKING_CARE_OF_HOME_PART_YEAR or GOING_TO_SCHOOL_PART_YEAR

 else if (LastWeeksWorked = 0) then do;

 if (LastReasonNotWorking == NIU_WORKED_LAST_YEAR)then

 ActivityIndex = 9; //OTHER;

 else

 ActivityIndex = (LastReasonNotWorking) + 2;

else

 ActivityIndex = 9; //OTHER;

 else

 ActivityIndex = 0;

LaborForceActivity codes (used only in conversion)
 1 = Working full-time
 2 = Working part-time
 3 = On strike
 4 = On layoff
 5 = Looking for work
 6 = Ill or disabled
 7 = Taking care of home
 8 = Going to school
 9 = In armed forces
10 = Retired
11 = Discouraged and not looking for work
12 = Other activity
LastReasonNotWorking codes:

0 = NIU

1 = Ill or disabled

2 = Taking care of home

3 = Going to school

4 = Could not find work

5 = n/a, formerly Armed Forces

6 = Retired

7 = Other

MakeConsistentValues (in Allocate.cpp)

Eliminates certain data inconsistencies that may exist.

if LastWeeksWorked is equal to 0, then LastNumberOfEmployers = 0

if LastWeeksWorked > 0, then LastNumberOfEmployers = max (1, LastNumberOfEmployers)

if LastNumberOfEmployers > 3, then LastNumberOfEmployers = 3

if WeeksUnemplyed is equal to 0, then LastNumberOfStretchesLooking = 0

if WeeksUnemplyed > 0, then LastNumberOfStretchesLooking = max (1, LastNumberOfStretchesLooking)

if LastNumberOfStretchesLooking > 3, then LastNumberOfStretchesLooking = 3

GetPeriods (in Allocate.cpp)

Divides a person's weeks working, looking, and not in labor force reported for last year into up to seven periods and assigns a labor force activity to each of the periods.

 if (LastWeeksWorked == 52 and

LastWeeksWorked == LastWeeksFullTime) then do;

//A single working period.

NumOfPeriods = 1;

PeriodInfo [0].Type = WORKING_FULL_TIME_THIS_MONTH;

LastNumFullTimePeriods = 1;

LastNumPartTimePeriods = 0;

PeriodInfo [0].Length = 52;

NumOfUnemplyPeriods = 0;

NumOfWorkingPeriods = 1;

NumOfFullTimePeriods = 1;

NumOfPartTimePeriods = 0;

 else if (LastWeeksWorked == 52 and

LastWeeksWorked == LastWeeksPartTime) then do;

//A single working period.

NumOfPeriods = 1;

PeriodInfo [0].Type = WORKING_PART_TIME_THIS_MONTH;

LastNumFullTimePeriods = 0;

LastNumPartTimePeriods = 1;

 PeriodInfo [0].Length = 52;

 NumOfUnemplyPeriods = 0;

 NumOfWorkingPeriods = 1;

NumOfFullTimePeriods = 0;

NumOfPartTimePeriods = 1;

 else do;

 WeeksNotInLaborForce = 52 - LastWeeksWorked - WeeksUnemployed;

 NumOfWorkingPeriods = max (LastNumberOfEmployers,

 LastNumberOfStretchesLooking);

 if (NumOfWorkingPeriods > LastWeeksWorked)

 NumOfWorkingPeriods = LastWeeksWorked;

 NumOfUnemplyPeriods = LastNumberOfStretchesLooking;

 if (NumOfUnemplyPeriods > WeeksUnemployed)

 NumOfUnemplyPeriods = WeeksUnemployed;

if (WeeksUnemployed > 0 and NumOfUnemplyPeriods == 0)

NumOfUnemplyPeriods = 1;

 NumOfNotInLaborForcePeriods = 0;

 if (WeeksNotInLaborForce >= 1) then

NumOfNotInLaborForcePeriods = 1;

 NumOfPeriods = NumOfWorkingPeriods + NumOfUnemplyPeriods +

NumOfNotInLaborForcePeriods;

 if (NumOfPeriods < 4 and NumOfNotInLaborForcePeriods > 0) then do;

 NumOfNotInLaborForcePeriods = 1 + WeeksNotInLaborForce / 13;

if (NumOfNotInLaborForcePeriods > 3) then

NumOfNotInLaborForcePeriods = 3;

NumOfPeriods =
NumOfWorkingPeriods +

NumOfUnemplyPeriods +

NumOfNotInLaborForcePeriods;

 if (NumOfPeriods < 4 and NumOfWorkingPeriods > 0 and NumOfWorkingPeriods < 3) then do;

NumOfWorkingPeriods = 1 + (LastWeeksWorked / 13);

if (NumOfWorkingPeriods > 3) then

 NumOfWorkingPeriods = 3;

NumOfPeriods =

 NumOfWorkingPeriods +

 NumOfUnemplyPeriods +

 NumOfNotInLaborForcePeriods;

if (NumOfPeriods < 4 and NumOfUnemplyPeriods > 0 and

 NumOfUnemplyPeriods < 3) then do;

NumOfUnemplyPeriods = 1 + WeeksUnemployed / 13;

if (NumOfUnemplyPeriods > 3) then NumOfUnemplyPeriods = 3;

NumOfPeriods =

 NumOfWorkingPeriods +

 NumOfUnemplyPeriods +

 NumOfNotInLaborForcePeriods;

if (LastWeeksWorked == LastWeeksFullTime)

LastNumFullTimePeriods = NumOfWorkingPeriods;

else if (LastWeeksFullTime == 0)

LastNumFullTimePeriods = 0;

if (LastWeeksWorked == LastWeeksPartTime)

LastNumPartTimePeriods = NumOfWorkingPeriods;

else if (LastWeeksPartTime == 0)

LastNumPartTimePeriods = 0;

if (LastWeeksFullTime > 0 and

LastWeeksPartTime > 0 and

NumOfWorkingPeriods >= 1 and

NumOfWorkingPeriods <= 2) then do;

LastNumFullTimePeriods = 1;

LastNumPartTimePeriods = 1;

NumOfWorkingPeriods = 2;

NumOfFullTimePeriods=1;

NumOfPartTimePeriods=1;

else if (LastWeeksFullTime > 0 and

LastWeeksPartTime > 0 and

NumOfWorkingPeriods == 3 and

(LastWeeksFullTime > LastWeeksPartTime or

LastWeeksFullTime == LastWeeksPartTime)) then do;

LastNumFullTimePeriods = 2;

LastNumPartTimePeriods = 1;

NumOfFullTimePeriods=2;

NumOfPartTimePeriods=1;

else if (LastWeeksFullTime > 0 and

LastWeeksPartTime > 0 and

NumOfWorkingPeriods == 3 and

LastWeeksFullTime < LastWeeksPartTime) then do;

LastNumFullTimePeriods = 1;

LastNumPartTimePeriods = 2;

NumOfFullTimePeriods=1;

NumOfPartTimePeriods=2;

NumOfPeriods =

NumOfWorkingPeriods +

NumOfUnemplyPeriods +

NumOfNotInLaborForcePeriods;

NumOfFullTimePeriods = LastNumFullTimePeriods;

NumOfPartTimePeriods = LastNumPartTimePeriods;

 if (LastNumFullTimePeriods > 0) then do;

 Length = (int)((LastWeeksFullTime / LastNumFullTimePeriods) + .5);

 LastLength = LastWeeksFullTime - (LastNumFullTimePeriods - 1) * Length;

 for (int i = 1; i <= LastNumFullTimePeriods; i++) then do;

 PeriodInfo [i-1].Type = WORKING_FULL_TIME_THIS_MONTH;

 PeriodInfo [i-1].Length = Length;

 if (i == LastNumFullTimePeriods) then PriodInfo [i-1].Length = LastLength;

 if (LastNumPartTimePeriods > 0) then do;

 Length = ((LastWeeksPartTime / LastNumPartTimePeriods) + .5);

 LastLength = LastWeeksPartTime - (LastNumPartTimePeriods - 1) * Length;

if (LastNumFullTimePeriods > 0) then do;

 BeginPeriod = LastNumFullTimePeriods + 1;

 EndPeriod = NumOfWorkingPeriods;

else do;

 BeginPeriod = 1;

 EndPeriod = LastNumPartTimePeriods;

 for (int i = BeginPeriod; i <= EndPeriod; i++) then do;

 PeriodInfo [i-1].Type = WORKING_PART_TIME_THIS_MONTH;

 PeriodInfo [i-1].Length = Length;

 if (i == LastNumPartTimePeriods) then PeriodInfo [i-1].Length = LastLength;

 if (NumOfUnemplyPeriods > 0) then do;

 Length = (WeeksUnemployed / NumOfUnemplyPeriods + .5);

 LastLength = WeeksUnemployed – (NumOfUnemplyPeriods - 1) * Length;

 for (int i = NumOfWorkingPeriods + 1;

 i <= NumOfWorkingPeriods + NumOfUnemplyPeriods;

 i++) then do;

 PeriodInfo [i-1].Type = LOOKING_FOR_WORK_THIS_MONTH;

 PeriodInfo [i-1].Length = Length;

 if (i == (NumOfWorkingPeriods + NumOfUnemplyPeriods)) then PeriodInfo [i-1].Length = LastLength;

 if (NumOfNotInLaborForcePeriods > 0) then do;

 Length = (WeeksNotInLaborForce / NumOfNotInLaborForcePeriods + .5);

 LastLength = WeeksNotInLaborForce - (NumOfNotInLaborForcePeriods - 1) * Length;

 NumOfPeriods = NumOfWorkingPeriods +

 NumOfUnemplyPeriods +

 NumOfNotInLaborForcePeriods;

 for (int i = NumOfWorkingPeriods + NumOfUnemplyPeriods + 1;

i <= NumOfPeriods; i++) then do;

 PeriodInfo [i-1].Type = MapNotInLaborForceToPeriodType [ActivityIndex-1];

 PeriodInfo [i-1].Length = Length;

 if (i == NumOfPeriods) then PeriodInfo [i-1].Length = LastLength;

AllocatePeriod (in Allocate.cpp)

Assigns period type and length to each period identified by the GetPeriods function.

AllocateLength = SelectedPeriod.Length

int household = HouseholdID;

int person = PersonID;

do;

 WeeksThisMonth = min (WeeksChosenMonth, AllocateLength);

 if (SelectedPeriod.Type == WORKING_FULL_TIME_THIS_MONTH) then do;

 MonthlyWeeksWorked [ChosenMonth] += WeeksThisMonth;

 MonthlyWeeksFullTime [ChosenMonth] += WeeksThisMonth;

 RemainingFullWeeksWorked -= WeeksThisMonth;

 pConvertTotalWeeksWorked -= WeeksThisMonth * PersonWeight;

 TargetWeeksWorked [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else if (SelectedPeriod.Type == WORKING_PART_TIME_THIS_MONTH) then do;

 MonthlyWeeksWorked [ChosenMonth] += WeeksThisMonth;

 MonthlyWeeksPartTime [ChosenMonth] += WeeksThisMonth;

 RemainingPartWeeksWorked -= WeeksThisMonth;

 pConvertTotalWeeksWorked -= WeeksThisMonth * PersonWeight;

 TargetWeeksWorked [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else if (SelectedPeriod.Type == ON_LAYOFF_THIS_MONTH or

 SelectedPeriod.Type == LOOKING_FOR_WORK_THIS_MONTH) then do;

 MonthlyWeeksOfUnemployment [ChosenMonth] += WeeksThisMonth;

 RemainingWeeksUnemployed -= WeeksThisMonth;

 pConvertTotalWeeksUnemployed -= WeeksThisMonth * PersonWeight;

 TargetWeeksUnemployed [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else do;

 RemainingWeeksNotLabor -= WeeksThisMonth;

 TOTNLF -= WeeksThisMonth * PersonWeight;

 TargetWeeksNotLabor [ChosenMonth] -= WeeksThisMonth * PersonWeight;

MonthlyHoursWorked [ChosenMonth] =

(MonthlyWeeksFullTime [ChosenMonth] * LastHoursPerWeekFullTime) +

(MonthlyWeeksPartTime [ChosenMonth] * LastHoursPerWeekPartTime);

 AllocateLength -= WeeksThisMonth;

 WeeksChosenMonth -= WeeksThisMonth;

 RemainingWeeksTotal -= WeeksThisMonth;

 if (WeeksChosenMonth <= 0) then do;

 ChosenMonth++;

 if (ChosenMonth > 11)

 ChosenMonth -= 12;

 WeeksChosenMonth = pConvertpHouseholdGetWeeksPerMonth(ChosenMonth);

 while (AllocateLength > .01);

MakeMonthlyAlloc (in Allocate.cpp)

[ConvertBy12 provides for an even allocation to all 12 months of the year.]

do for each month of the year:

AllocateLength = SelectedPeriod.Length;

 int household = HouseholdID;

 int person = PersonID;

 do;

 WeeksThisMonth = min (WeeksChosenMonth, AllocateLength);

 if (SelectedPeriod.Type == WORKING_FULL_TIME_THIS_MONTH) then do;

 MonthlyWeeksWorked [ChosenMonth] += WeeksThisMonth;

 MonthlyWeeksFullTime [ChosenMonth] += WeeksThisMonth;

 RemainingFullWeeksWorked -= WeeksThisMonth;

 pConvertTotalWeeksWorked -= WeeksThisMonth * PersonWeight;

 TargetWeeksWorked [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else if (SelectedPeriod.Type == WORKING_PART_TIME_THIS_MONTH) then do;

 MonthlyWeeksWorked [ChosenMonth] += WeeksThisMonth;

 MonthlyWeeksPartTime [ChosenMonth] += WeeksThisMonth;

 RemainingPartWeeksWorked -= WeeksThisMonth;

 pConvertTotalWeeksWorked -= WeeksThisMonth * PersonWeight;

 TargetWeeksWorked [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else if (SelectedPeriod.Type == ON_LAYOFF_THIS_MONTH or

 SelectedPeriod.Type == LOOKING_FOR_WORK_THIS_MONTH) then do;

 MonthlyWeeksOfUnemployment [ChosenMonth] += WeeksThisMonth;

 RemainingWeeksUnemployed -= WeeksThisMonth;

 pConvertTotalWeeksUnemployed -= WeeksThisMonth * PersonWeight;

 TargetWeeksUnemployed [ChosenMonth] -= WeeksThisMonth * PersonWeight;

 else do;

 RemainingWeeksNotLabor -= WeeksThisMonth;

 TOTNLF -= WeeksThisMonth * PersonWeight;

 TargetWeeksNotLabor [ChosenMonth] -= WeeksThisMonth * PersonWeight;

MonthlyHoursWorked [ChosenMonth] =

(MonthlyWeeksFullTime [ChosenMonth] * LastHoursPerWeekFullTime) +

(MonthlyWeeksPartTime [ChosenMonth] * LastHoursPerWeekPartTime);

 AllocateLength -= WeeksThisMonth;

 WeeksChosenMonth -= WeeksThisMonth;

 RemainingWeeksTotal -= WeeksThisMonth;

 if (WeeksChosenMonth <= 0) then do;

 ChosenMonth++;

 if (ChosenMonth > 11)

 ChosenMonth -= 12;

 WeeksChosenMonth = GetWeeksPerMonth(ChosenMonth);

 while (AllocateLength > .01);

� Weeks not in the labor force are weeks neither working nor looking for work.

� $5,000 in 1985 dollars inflated to the current simulation year. The fixed dollar amount was based on SIPP data and is inflated by the aggregate of each year’s CPI from 1985 to the simulation year.

